
Quality Improvement with Testing

Jiayi Zheng

jiayi.zheng@student.uni-tuebingen.de

Abstract. Testing is the most frequently used method to improve soft-
ware quality and in many cases it is the only method in software-quality
program. This paper gives answers to the following questions from a de-
veloper’s point of view: “Why should we test?”, “What do we possibly
do wrong?” and “How should we test effectively?”

Introduction

Testing is a complex topic which by itself forms a discipline alongside other
software development activities. Unlike a software engineer or software developer,
a test manager or test engineer deals exclusively with testing activities during
the process of software development [AO, pp.4-5]. This paper however focuses
mainly on testing from a developer’s point of view.
The paper contains three sections. The first one Testing in the Context of
Software Quality gives an overview about the role of testing in improving
software quality and discusses about the effectiveness of testing. The second one
Problems with Testing shows common behaviors and practices of developers
which damage the effectiveness of testing. The last one Strategies for Effective
Testing contains a summary of selected tips and suggestions given by Steven
McConnel, Andrew Hunt and David Thomas, whose books Code Complete and
Pragmatic Programmer serve as main references for the paper.
The purpose of this paper is to answer the following three questions:

1. Why should we test?
2. What do we possibly do wrong?
3. How should we test effectively?

Testing in the Context of Software Quality

It is difficult to explain the necessity of testing without talking about software
quality first. The quality of a software can be defined by different characteristics.
McConnel categorizes those characteristics in internal quality characteristics and
external quality characteristics [MC, Sec.20.1]. External characteristics are char-
acteristics of the software that a user cares about, such as correctness or usability
1. Internal characteristics are those of the software that a developer cares about,
such as maintainability or readability 2. To improve the quality of a software
means to maximize a set of those characteristics so that the product eventually
meets the expectation of both developers and users [MC, Sec.20.2].
Testing is just one among many techniques for improving software quality. In
general, it helps developers in detecting errors in software and provides esti-
mations of certain quality characteristics mentioned above. Computer scientists
and test engineers traditionally use two different systems to categorize software
testing activities[AO, p.5]. One system is based on software development activity
represented by the so called “V Model” with Acceptance Testing corresponding
to the Requirement stage of software development, System Testing to the Ar-
chitecture stage, Integration Testing to the Design stage and Unit Testing to
the Implementation stage [AO, pp.5-7]. The other system uses the test process

1 McConnel listed 8 external characteristics: correctness; usability; efficiency; reliabil-
ity; integrity; adaptability; accuracy; robustness [MC, Sec.20.1].

2 McConnel listed 7 internal characteristics: maintainability, flexibility, portability,
reusability, readability, testability, understandability.

2

maturity levels with each level representing one certain attitude of the testers.
Five different levels are described in [AO, pp.8-10]:

Level 0 Testing is the same as debugging.
Level 1 The purpose of testing is to show correctness.
Level 2 The purpose of testing is to show failures.
Level 3 Testing can show presence, but not the absence, of failures.
Therefore the purpose of testing is to reduce the risk of using the soft-
ware.
Level 4 Testing is a mental discipline that increases software quality.

To summarise, those kinds of categorization indicate that the testing process is
an ongoing process which may contain different strategies and techniques de-
pending on the different stages of software development, and also the attitude
or thinking of the testers can have an impact on it.

Many software projects rely on testing as the primary method of both quality
assessment and quality improvement [MC, Sec.20.2]. However testing is not the
most efficient technique for defect removal and by no means provides sufficient
quality assurance performed alone. As Jones states in [J, p.7], though testing
has been the primary software defect removal method for more than 50 years,
most forms of testing are only about 35% efficient or find only one bug out of
three. The evaluation of efficiency results from taking the percentage of defects,
detected by the used method, out of the total number of defects exist in the
software. Statistics of Defect-Detection Rates in [MC, Sec.20.3] show that none
of the tested defect removal techniques achieved an efficiency above 75% per-
formed alone. For developers, the most common kinds of strategies: unit testing
and integration testing each are only 30% and 35% efficient. Even the combi-
nation of those testing strategies often is less than 60% efficient [MC, Sec.22.1].
Moreover, testing is an expensive, labor intensive practice, as stated in [AO,
p.10]. It requires up to 50% of software development costs and even more for
safety-critical applications. In comparison, other techniques like collaborative
development practices in their various forms can perform better and cost less
[MC, Sec.22.1].

Nevertheless, for developers testing is still a beneficial practice. Developer
testing can assess the reliability of the software under construction. The test
results describe, how reliable the software is, in the current stage of development
and guide to bug fixes. With Unit Testing developers can make debugging job
easier by writing unit tests for each routine. In this way, if the program breaks
they can easily find out which routine causes the defect. Finally, if the errors
and test results are recorded over time, they can reveal common errors, as well
as error-prone components or routines of the software, so that the developers
can prevent this kind of problems in the future [MC, Sec.22.1].
The benefits of testing listed above surely do not compensate its deficiency in
error detection compared to other techniques, but part of the problem with the

3

effectiveness of testing is caused by the testers or developers themselves [MC,
Sec.22.1].

Problems with Testing

For developers, the testing activity doesn’t fit into the natural course of soft-
ware development which is to build and keep the software from breaking, whereas
testing causes the software to break [MC, Sec.22.1]. So it is understandable that
most developers hate testing, they tend only to test the part of the program
that works and subconsciously avoid the weak spots [HT, Sec.43, p.1]. Tests for
whether the code works are so called “clean tests”. Their counterparts — “dirty
tests” are tests for all the ways the code breaks [MC, Sec.22.2].
The preference of the developers for “clean tests” is one issue that affects the
effectiveness of testing. McConnel mentioned an experiment carried out by Glen-
ford Myers where a group of experienced programmers had to test a program
with 15 known defects [MC, Sec.22.1]. The average defect-detection rate of the
group is 30% or 5 out of 15 errors. None of them found more than 9 errors. This
experiment shows that the effectiveness of testing depends on the willingness of
the developers to find errors. With the assumption that the program is correct
and the aversion to “dirty tests”, developers will likely overlook errors in the
program and thus affect the effectiveness of testing.

An other problem with testing is that developers tend to have an optimistic
view about test coverage. The statistics show that the coverage rate the devel-
opers believe to be achieving (95%) is much higher than the coverage rate they
are truly achieving (50 - 60% in average) [MC, Sec.22.2]. Moreover, most devel-
opers consider the achievement of 100% of “statement coverage” as sufficient,
due to the fact that a lot of coverage analysis tools on the market apply this
kind of test coverage criterion [HT, Sec.43, p.7]. But in fact, “statement cover-
age” is hardly sufficient, a better coverage criterion to meet would be “branch
coverage”. The following example with the corresponding graph demonstrates
the difference between “statement coverage” and “branch coverage”:

Statement1;

if (Predicate) {

Statement2;

}

Statement3;

S1

P

S2

S3

true

false

4

testcase1 = [S1, P, S2, S3]
testcase2 = [S1, P, S3]

Let Ti be all possible sets of testcases for this example. T1 = {testcase1} sat-
isfies statement coverage and T2 = {testcase1, testcase2} satisfies branch cover-
age. In other words, “100% statement coverage” requires that every statement,
which is every node in the graph, is executed at least once, whereas “100%
branch coverage” requires that every path the code may take, which is every
edge in the graph, is executed at least once. Since “branch coverage” subsumes
“statement coverage” [AO, p.20], testing process aiming for “100% branch cov-
erage” can discover more errors than that aiming for “100% statement coverage”.

There are other factors besides those described above, which can affect the
effectiveness of testing. Jones for example, named bad test cases with defects in
them as one of the major defect origins in the U.S. software industry. About 6%
of test cases have bugs of their own [J, pp.2-3]. And Amman and Ouffut pointed
out in [AO, p.225], that many organizations tend to postpone all testing activities
to the end of the implementation or after the implementation has started. But
the later in the process the fewer resources remain for the testers or developers to
thoroughly plan and design tests. As a consequence, the testing process becomes
compressed and insufficient. Overall, the effectiveness of testing depends heavily
on the attitude and the behavior of the developers or testers themselves.

Strategies for Effective Testing

This section presents some strategies for developers to perform testing effectively.

1. Hope to Find Bugs
As explained in the previous sections, the effectiveness of testing depends on
the developers’ willingness to find errors. Allthough, it might appear to be
an unnatural act, but developers should hope to find bugs in their software.
The message in both books is similar: “We are driven to find our bugs now,
so we don’t have to endure the shame of others finding our bugs later.” in
[HT, Sec.43, p.1] and “[...], but you should hope that it’s you who finds the
errors and not someone else.” in [MC, Sec.22.1].

2. Aim for Better Test Coverage
Many coverage analysis tools on the market keep track of which lines of codes
or statements in a program have been executed and which have not. This
kind of test coverage is hardly sufficient for detecting all possible errors in
the program. Instead of aiming for “100% statement coverage”, McConnel
suggested to achieve “100% branch coverage” by testing, where every path
of the program is executed at least once. Hunt and Thomas, on the other
hand, suggested to use the “state coverage” where the number of states that

5

the program may have is the concern.
As an example, for the following function with two integer input parameters,
each of which can be a number from 0 to 999, there are 1,000,000 logical
states 3. One state from those causes the divide-by-zero error where a = 0
and b = 0 [HT, Sec.43, p.8].

int test(int a, int b) {

return a / (a + b);

}

In general, it is impossible to have 100% test coverage of a program, even
with good coverage criteria, there are still areas where errors could possibly
be and are hard to be detected. Nevertheless, effective use and good choice
of coverage criteria make developers and testers more likely to find bugs in
the program and thus increase the effectiveness of testing.

3. Test as Early as Possible
As Thomas and Hunt recommended in [HT, Sec.43, p.1], developers should
start testing as soon as they have code, because the earlier a bug is found,
the cheaper it is to fix it. Statistics about the increase of defect-cost over
the stages of software development in [MC, Sec.3.1] show that the longer the
defect stays in the software development process, the more damage it causes
and the higher the cost will be to fix it. For example, for the following
workflow: requirements, architecture, construction, system test and post-
release, a defect inserted in the architecture stage of development costs $1000
to fix during the architecture stage. But for its removal in the system test
stage, the cost will increase to $15,000.
One good approach for testing as early as possible is test-first programming
or test-driven development(TDD). By writing testcases first problems or
errors in the software would be exposed ealier and developers tend to produce
better code as they have to think or rethink about requirements and design
before coding.

4. Test Often and Automatically
When changes are made to a software or components of the software, it is
necessary to rerun tests that have been successfully completed in the past on
regular basis, to make sure that the changes did not insert any new defects.
This kind of tests are called regression tests which needed to be performed
automatically. The idea behind regression testing is that small changes to
one part of a program often cause problems in some other distant parts of
the program. To find this kind of problem, developers should systematically
retest the program using automated testing tools [AO, p.215].
One common usecase for regression testing is to add one regression test
for each bug or problem reported by human tester and rerun it each time
changes have been made to the program [AO, p.216]. Thomas and Hunt also

3 This is where techniques like Equivalence Partitioning and Boundary Analysis come
in handy for reducing the amount of test cases by picking meaningful states to test.
More about Equivalence Partitioning and Boundary Analysis in [MC, Sec.22.3].

6

supported this approach, they state that it is very likely that bugs once found
would appear again sometime later and it is a waste of time to chase after
known bugs. Moreover, customers or users are more willing to be saddled
with new problems than with the same problem over and over [AO, p.216],
so it is also a beneficial practice from a usability perspective.

5. Testing the Tests
As mentioned in the previous section, bad testcases with errors in them also
represent a major origin of defects. Hunt and Thomas suggested that after
writing a test to detect a particular bug, developers should cause the bug
deliberately to make sure that the test actually works as intended. A more
sophiscated version of this approach requires a saboteur who is responsible
for introducing bugs on purpose to test whether the testcases will catch them
[HT, Sec.43, p.7].

Conclusion

In conclusion, we can now answer the three questions introduced in the beginning
of this paper:

1. Why should we test?
Because we care about software quality. Though, it is hard to achieve high
quality with testing alone, as developer, we can still benefit from the testing
practice and at least improve our code.

2. What do we possibly do wrong?
We usually are not willing to find bugs and are too optimistic about the test
coverage.

3. How do we test effectively?
We should hope to find bugs.
We should aim for better test coverage by choosing for example branch
coverage or state coverage over statement coverage.
We should test as early as possible, because in the end it will turn out to be
cheaper for us and writing tests first is a beneficial practice.
We should test often and automatically, use regression testing for finding
bugs only once.
We also should test the testcases to make sure that they work as intended.

References

[MC] McConnel, S.: Code Complete, Second Edition. Microsoft Press, 2004
[HT] Hunt, A., Thomas, D.: The Pragmatic Programmer: From Journeyman to Mas-

ter. Addison-Wesley, 1999
[AO] Ammann, P., Offutt, J.: Introduction to Software Testing. Cambridge Univer-

sity Press, 2008
[J] Jones, C: Software Defect Origins and Removal Methods, 2012. published on-

line http://www.ifpug.org/Documents/Jones-SoftwareDefectOriginsAnd

RemovalMethodsDraft5.pdf

7

